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MONOIDAL CENTRES AND GROUPOID-GRADED CATEGORIES

BRANKO NIKOLIĆ AND ROSS STREET

Dedicated to Marta Bunge
Abstract. We denote the monoidal bicategory of two-sided modules (also called pro-
functors, bimodules and distributors) between categories by Mod; the tensor product
is cartesian product of categories. For a groupoid G , we study the monoidal centre
ZPspG ,Modopq of the monoidal bicategory PspG ,Modopq of pseudofunctors and pseudo-
natural transformations; the tensor product is pointwise. Alexei Davydov defined the
full centre of a monoid in a monoidal category. We define a higher dimensional version:
the full monoidal centre of a monoidale (= pseudomonoid) in a monoidal bicategory
M , and it is a braided monoidale in the monoidal centre ZM of M . Each fibration
π : H Ñ G between groupoids provides an example of a full monoidal centre of a
monoidale in PspG ,Modopq. For a group G, we explain how the G-graded categori-
cal structures, as considered by Turaev and Virelizier in order to construct topological
invariants, fit into this monoidal bicategory context. We see that their structures are
monoidales in the monoidal centre of the monoidal bicategory of k-linear categories on
which G acts.
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Introduction

A feature of categories is that they provide a framework for understanding analogies
between concepts in different disciplines as examples of the same concept interpreted in
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different categories. Bicategories do the same for categorical concepts, and so on. An
example of this unification process is provided by the second author in Section 4.8 of
[50] where the full centre of an algebra, as defined and constructed by Davydov [12], is
shown to be a monoidal centre in the sense of [48] in the monoidal bicategory of pointed
categories.

Another aspect of higher categories is the microcosm principle (so named by Baez
and Dolan; see footnote 2 on page 100 of [15]). For example, monoids as sets with an
associative unital multiplication need no mention of categories in their definition. Yet,
once we try to examine the structure of monoid in terms of functions and commutative
diagrams, we see that we are using the monoidal category structure on the category Set
of sets. The microcosmic phenomenon is that we need a higher dimensional version of
monoid (monoidal category) to obtain the general notion of monoid. What is needed
of the general setting for monoidal category (monoidale) is an even higher dimensional
notion of monoid, namely, a monoidal bicategory. This principle occurs with centres as
will appear in Sections 2 and 3.

The bicategory which we call Mod whose morphisms are two-sided modules between
categories was (up to biequivalence) considered by Marta Bunge in Chapter III, Section
14 of her PhD thesis [7]; also see [8]. Up to duality, the morphisms of Mod have also been
called profunctors [3], bimodules [31] and distributors [4, 5]. In Section 1 we establish our
notation for monoidal bicategories with Mod as prime example and where comonoidales
are the promonoidal categories of Brian Day [13]. We begin our main theme by providing
examples involving groupoids. We find that there is no more difficulty working with a
groupoid G than with a group G; indeed, to some extent the several object case makes
the situation clearer than working with one object.

In Section 2 we review the centre of a monoidal bicategory. We examine the pointwise-
monoidal bicategory PspG ,Modopq of pseudofunctors from a given groupoid G regarded as
a locally discrete bicategory. Then, in Section 3, we generalise a little the limit construc-
tion of monoidal centre to include internal full centres of Alexei Davydov [12] and their
higher versions. The centre of a monoidale is obtained as a representing object for the
centre piece construction (in the terminology of [48]). The construction involves descent
categories of certain pseudocosimplicial categories which arise formally from the universal
property of the augmented simplicial category.

As in the work of [17, 14, 32], the relationship between centres in Modop and centres of
convolution monoidal set-valued functor categories are examined in Section 4. This leads
naturally in Section 5 to the study of the groupoid G aut of automorphisms in a groupoid
G since it allows the identification of centres of the cartesian monoidal category rG , Sets
and the pointwise-monoidal bicategory PspG ,Modopq.

Our main examples arise when we are given a fibration π : H Ñ G between groupoids
(such as a surjective group morphism). There is a pseudofunctor H whose Grothendieck
construction is π and which possesses a natural monoidale structure as an object of
PspG ,Modopq. We discuss the convolution monoidal structure on PspG aut,Modopq in
Section 6. There is a pseudofunctor Haut whose Grothendieck construction is the fibration
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πaut : H aut Ñ G aut and which possesses a natural braided monoidale structure as an
object of PspG aut,Modopq.

In Sections 7 and 8, we show how structures and constructions defined by Turaev and
Virelizier [52] (also see [51, 29, 2]) forG-graded categories, whereG is a group, are precisely
the usual monoidal structures taken in the monoidal bicategories under discussion. To
some extent, we replace the monoidal category of k-modules by the monoidal bicategory
Modop whose morphisms are two-sided modules on which categories act.

There are several benefits gained by working at the bicategorical level. While k-
modules only have monoidal duals if they are finitely generated and projective, all objects
of Modop have duals. While k-modules only have finite direct sums, all small direct sums
exist in Modop. While the monoidal centre of the category of all k-linear representations of
a group G is not tortile [40] (also called “ribbon”), the monoidal centre of the bicategory of
Modop-representations of G is tortile. At this stage we are not saying anything about the
main theorem of [52] which is a G-graded version of a theorem of Müger [39]. However,
note that the invertibility of the S-matrix in the G-graded case uses Müger’s result.

Moreover, a higher version of the Davydov full centre occurs in the key example in
[52]. Indeed, our concluding Section 9 shows how Haut is the full centre of H.

1. The bicategory of categories and two-sided modules

Bicategories as defined by Jean Bénabou [3] are “monoidal categories with several objects”
in the sense that additive categories are “rings with several objects” [38]. For bicategories
A and B, we write PspA ,Bq for the bicategory of pseudofunctors A Ñ B, pseudonat-
ural transformations, and modifications (in the terminology of Kelly-Street [28]). In the
spirit of [33] notice that, if A � G is a groupoid, lax natural transformations between
pseudofunctors A Ñ B are automatically pseudonatural. We will use monoidal bicate-
gory terminology from Day-Street [15] except that we now use “monoidale” in preference
to “pseudomonoid”.

A good example of an autonomous symmetric monoidal bicategory is Mod. The
objects are categories. The homcategories are defined by

ModpA ,Bq � rBop �A , Sets ;

objects of these homs are called modules. Composition

ModpB,C q �ModpA ,Bq
�
ÝÑ ModpA ,C q

is defined by

pN �MqpC,Aq �

» B
MpB,Aq �NpC,Bq .

The identity module A Ñ A is the hom functor of A .
Tensor product is finite cartesian product of categories; it is not the product in Mod.

Coproduct in Mod is coproduct of categories; it is also product in Mod.
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We identify each functor F : A Ñ B with the module F� : A Ñ B defined by
F�pB,Aq � BpB,FAq. There is also the module F � : B Ñ A defined by F �pA,Bq �
BpFA,Bq and providing a right adjoint F� % F � for F� in Mod.

The dual of A in Mod is the opposite category A op. We have an equivalence of
pseudofunctors in the square

Catco

p�qop

��

p�q�
//Modop

p�qop

��

� +3

Cat
p�q�

//Mod

(1.1)

where the top p�q� and bottom p�q� pseudofunctors are the identity on objects, locally-
full, strong monoidal, and coproduct preserving. The right side of (1.1) is an equivalence
(bijective on objects and an isomorphism on homcategories).

For each category A , we write QA for the splitting idempotent completion of A
(for example, see Chapter 2, Exercises B of [20]) with inclusion NA : A Ñ QA . It is
easy to see that pQA qop � QpA opq and QA � QB � QpA � Bq. Since idempotent
splittings are preserved by all functors, we also have rpQA qop, Sets � rA op, Sets. Recall
the non-additive Morita-type Theorem from [7] that rA op, Sets � rBop, Sets if and only
if QA � QB. Consequently, we have a strong monoidal auto-biequivalence on Mod:

Q : ModÑ Mod (1.2)

and a monoidal pseudonatural equivalence N : 1Mod � Q. From [31] we also see that Q
has a Cauchy completion property which implies it takes left adjoint modules (“Cauchy
modules”) to functors (“convergent modules”). In particular, equivalences in Mod are
taken to equivalences in Cat.

Recall (for example from [15]) that monoidales in Modop are promonoidal categories
A in the sense of Day [13]. The tensor product is a module P : A Ñ A � A and the
unit is a module J : A Ñ 1. The Day convolution monoidal structure on the functor
category rA , Sets has unit J : A Ñ Set and tensor product F �G defined by

pF �GqC �

» A,B
P pA,B;Cq � FA�GB .

Suppose V is a complete cocomplete closed symmetric monoidal category. We have a
symmetric (weak) monoidal pseudofunctor

r�,V s : Modop ÝÑ V -CAT (1.3)

taking each category A to the V -enriched functor category rA ,V s. Therefore, each
promonoidal category is taken to a convolution monoidal V -category. In the case V � Set,
(1.3) is the contravariant representable pseudofunctor Modp�,1q.
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Let G be a groupoid; that is, a category in which all morphisms are invertible. Like
every category, G has a promonoidal structure for which the convolution tensor-product
structure on rG , Sets is pointwise cartesian product. In this case, the tensor unit J is
constant at the one-point set and the module P : G Ñ G � G is defined by

P pp, q; rq � G pp, rq � G pq, rq, P pa, b; cqpx, yq � pG pa, cqx,G pb, cqyq � pcxa, cybq. (1.4)

As we expound the theory, we will carry along an example based on Example 3.5 of
[52] which, in turn, was based on an example in [35]. At this point it is just to show some
naturally occurring lax functors and pseudofunctors.

1.1. Example. A groupoid morphism π : H Ñ G is a functor. According to Bénabou
[4] (see [46]), any functor over a category G corresponds to a normal lax functor H : G Ñ
Modop. The functor π is an iso-fibration if and only if it is a fibration if and only if it is
an opfibration if and only if it is Giraud-Conduché [23, 9]. In the one-object case, it is
the same as saying the group morphism π : H Ñ G is surjective. In the general case, it
means that, for all morphisms p g

ÝÑ πptq in G , there exists a morphism s
h
ÝÑ t in H such

that πpsq � p and πphq � g. (All morphisms in H are cartesian and cocartesian for π.)
In this case, the normal lax functor is actually a pseudofunctor. Let us now describe it.
For p P G , the category Hp is the fibre π�1ppq of the functor π over p: the objects are
those s P H with πpsq � p and the morphisms those x : s Ñ s1 in H with πpxq � 1p.
For a : pÑ q in G , the module Ha : Hq Ñ Hp is defined by

pHaqps, tq � tx P H ps, tq : πpxq � au .

In particular, H1p is the identity module of Hp. For a composable pair p a
ÝÑ q

b
ÝÑ r in G ,

the composite module Ha �Hb is defined by

pHa �Hbqps, uq �
» t
ty P H pt, uq : πpyq � bu � tx P H ps, tq : πpxq � au .

The composition constraint has components the bijections

pHa �Hbqps, uq ÝÑ Hpbaqps, uq , ry, xs ÞÑ yx .

A cleavage σ for the fibration π : H Ñ G amounts to a choice of morphism a�ptq
σpaq
ÝÝÑ t

in H with πpσpaqq � a for each t P H and a P G pp, πptqq. The pseudofunctor H :
G Ñ Catop corresponding to this cloven fibration is defined by taking Hp � π�1ppq as

before, taking Ha � a� where a�pt
y
ÝÑ t1q � pa�ptq

σpaq
ÝÝÑ t

y
ÝÑ t1

σ�1paq
ÝÝÝÝÑ a�pt1qq, while

the component at u P Hr of the invertible composition constraint pHaqpHbq ñ Hpbaq
is equal to σpbaq�1σpbqσpaq P pHpqpa�b�puq, pbaq�puqq. We use the same symbol for the
pseudofunctors H since the first is equivalent to the composite of the second with the
canonical pseudofunctor p�q�.
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1.2. Remark. Fröhlich-Wall [22] studied monoidales in the cartesian monoidal 2-category
Cat{G . (For us G can be a general groupoid although, for them, G has one object, that
is, G is a group). They were mainly interested in objects π : C Ñ G for which C is a
categorical group (what they call “group-like”) and π is Giraud-Conduché. So they could
equally have looked at the monoidal full sub-2-category Cat{GCG of Cat{G whose objects
are Giraud-Conduché functors. There is a strong monoidal pseudofunctor

Cat{GCG Ñ PspG ,Modopq

which takes morphisms to pseudonatural transformations whose components are right
adjoints of functors; for this see [46] and note that taking inverses of morphisms defines
a (promonoidal) isomorphism G op � G and we have the monoidal equivalence p�qop :
Modop � Mod of (1.1).

2. Review of centres

The centre of a monoidal category appeared in [25] and was reported by S. Majid [36]
as known to V. Drinfel’d along with its connection to the Drinfel’d double [18] of a Hopf
algebra. The centre1 ZV of a monoidal category V is a braided monoidal category in the
sense of [27].

The centre ZM of a monoidal bicategory M appeared in [1] with corrections in [11]
and applications to topological quantum field theory in [30]. The centre of a monoidal
bicategory is a braided monoidal bicategory in the sense of [17].

Taking a monoidal bicategory M to be a one-object tricategory in the sense of [24],
McCrudden [37] explicitly defined braidings on M in his Appendix A. However, we
will take the approach of [1, 11, 17] and work as if our monoidal bicategory M were
a Gray monoid (also called a semistrict monoidal bicategory). Justification lies in the
coherence theorem of [24]. In particular, we write as if M were a (strict) 2-category,
and associativity and unit constraints (along with their equivalence adjoints, units and
counits) were identities. One of the two choices will be assumed made to obtain the tensor
product �b� : M �M Ñ M as a pseudofunctor. In some diagrams we will even delete
the tensor symbol b between its arguments. The tensor unit is denoted by I.

An object of ZM is a triplet A � pA, u, ζq where A is an object of M , where u :
A b � Ñ � b A is a pseudonatural equivalence with uI � 1A, and ζ is an invertible
modification

Ab�b � u //

ub1 ((

�b � bA

�b Ab �
1bu

77

ζ�� (2.5)

1We like the fact that Z is not only the first letter of the German word for centre but also for braid.
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with ζI,X � 1uX � ζX,I subject to the 2-cocycle condition (2.6).

AXY Z

uXY 1Z

$$

uXY Z //

uX1Y 1Z

��

XY ZA
ζXY,Z��

ζX,Y 1Z��

XAY Z
1XuY 1Z

// XY AZ

1X1Y uZ

OO

�

AXY Z
uXY Z //

uX1Y 1Z

��

XY ZA

ζX,Y Z��

1XζY,Z��

XAY Z

1XuY Z

::

1XuY 1Z
// XY AZ

1X1Y uZ

OO

(2.6)

A morphism pf, ϕq : pA, u, ζq Ñ pB, v, ξq in ZM consists of a morphism f : AÑ B in
M and an invertible modification

Ab� u //

fb1
��

�b A

1bf
��

B b� v
// �bB

ϕ�� (2.7)

with ϕI � 1f subject to the condition (2.8).

AXY
uXY //

uX1Y

%%

f1X1Y

��

XY A

ζX,Y��

1X1Y f

��

XAY
1XuY

99

1Xf1Y

��

BXY

ϕX1Y��

vX1Y %%

XY B

1XϕY��

XBY
1XvY

99

�

AXY
uXY //

f1X1Y

��

XY A

1X1Y f

��

BXY
vXY //

ϕXY��

vX1Y %%

XY B

XBY

ξX,Y��
1XvY

99

(2.8)

A 2-morphism σ : pf, ϕq ñ pg, ψq : AÑ B in ZM is a 2-morphism σ : f ñ g in M such
that (2.9) commutes.

p1X b fq � uX
ϕX //

p1Xbσq�uX
��

vX � pf b 1Xq

vX�pσb1Xq
��

p1X b gq � uX ψX

// vX � pg b 1Xq

(2.9)

The tensor product of ZM is defined on objects by

Ab A1 � pAb A1, Ab A1 b�
1Abu

1

ÝÝÝÝÑ Ab�b A1 ub1A1ÝÝÝÝÑ �b Ab A1, θq

where θX,Y is the composite of the 2-morphism

uXY 1A1 � 1Au
1
XY

pζX,Y b1A1 q�p1Abζ
1
X,Y q

ùùùùùùùùùùùùùùñ 1XuY 1A1 � uX1Y 1A1 � 1A1Xu
1
Y � 1Au

1
X1Y



10 BRANKO NIKOLIĆ AND ROSS STREET

with the canonical isomorphism between the codomain and the morphism

1XuY 1A1 � 1X1Au
1
Y � uX1A11Y � 1Au

1
X1Y .

On morphisms the tensor product is defined by pf, ϕq b pf 1, ϕ1q � pf b f 1, ωq where

1Xff
1 � uX1A1 � 1Au

1
X

ωX
ùùñ vX1A1 � 1Av

1
X � ff 11X

is canonically isomorphic to

1Xf1A1 � uX1A1 � 1A1Xf
1 � 1Au

1
X

pϕXb1A1 q�p1Abϕ
1q

ùùùùùùùùùùùñ vX1A1 � f1A1A1 � 1Av
1
X � 1Af

11X .

The braiding for ZM involves a pseudonatural transformation with object component

cA,A1 : Ab A1 Ñ A1 b A

made up of the morphism Ab A1 uA1ÝÝÑ A1 b A and the pasted invertible 2-morphisms

AA1X

uA11X

��

uA1X

##

1Au
1
X // AXA1

uXA1

##

u1Au1
X��

uX1A1 // XAA1

1XuA1

��

ζ�1
X,A1��

A1AX
1A1uX

//

ζA1,X��

A1XA
u1X1A

// XA1A ,

and with morphism component the pasted composite

AA1

ϕA1��

uA1 //

f1A1
��

A1A

1A1f

��

BA1

vf 1��

vA1 //

1Bf
1

��

A1B

f 11B
��

BB1
vB1

// B1B .

The braiding also involves two invertible 2-cells

ρA|A1,A2 : cA,A1bA2 ñ p1A1 b cA,A2q � pcA,A1 b 1A2q

and
ρA,A1|A2 : cAbA1,A2 ñ pcA,A2 b 1A1q � p1A b cA1,A2q ;

these are respectively provided by the following two diagrams.

AA1A2 uA1A2 //

uA1b1 %%

A1A2A

A1AA2
1buA2

99

ζA1,A2��

AA1A2
1Abu

1
A2//

1Abu
1
A2 %%

AA2A1uA2b1A1// A2AA1

AA2A1
uA2b1A1

99

���
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If M is a braided monoidal bicategory then there is a canonical braided strong
monoidal pseudofunctor

M ÝÑ ZM , X ÞÑ X :� pX, cX,�, ρX|�,�q , f ÞÑ f :� pf, cf,�q , σ ÞÑ σ (2.10)

which is locally full.
Of course, if V is a monoidal category, it can be regarded as a monoidal bicategory

with only identity 2-morphisms, and ZV simplifies to the monoidal centre of V as in [25].
If A is a monoid (in Set), it can be regarded as a monoidal category with only identity
morphisms, and ZA � ta P A : ax � xa @ x P Au � SetA ApA,Aq where SetA A is the
category Eilenberg-Moore algebras for the monad Ab�b A on Set and A acts on itself
on both sides by its own multiplication.

2.1. Example. For our groupoid G , we have the monoidal bicategory PspG ,Modopq
where the tensor product is pointwise the tensor of Modop; this tensor product is of
course Day convolution with the promonoidal structure (1.4) on G . Up to equivalence,
the objects of ZPspG ,Modopq can be simplified somewhat; a lower dimensional version
appears as Proposition 4.3 of [14] and as Theorem 8.6 of [17]. To see how this works,
take such an object pF, u, ζq. Making use of the biequivalence Q of (1.2), we can as-
sume that F is a pseudofunctor from G to Catop and that the equivalences uK have
functors as components. By the bicategorical Yoneda lemma [42] and the fact that
p�q� : Cat Ñ Mod preserves bicategorical colimits, the pseudonatural family of func-
tors uK : K �F Ñ F �K is determined by restricting K to representables. The functors
uG pr,�qp : G pr, pq�FpÑ Fp�G pr, pq correspond to functions G pr, pq Ñ rFp, Fp�G pr, pqs
which are, in particular, pseudonatural in r. By the bicategorical Yoneda lemma, these
functions correspond to functors δ̄p : Fp Ñ Fp � G pp, pq. The extra structure and ax-
ioms on u are equivalent to giving an isomorphism between the identity of Fp and the
composite of δ̄p with the first projection, so that δ̄p is determined up to isomorphism by
functors δp : FpÑ G pp, pq, and that these δp are pseudonatural in p P G . This last means
that diagram (2.11) commutes for all g P G pp, qq, that the unit constraint 1Fp � F1p is
identified by δp, and that the composition constraint Fg � Fh � F phgq is identified by
G p1r, ghq � δr.

Fq
δq
//

Fg

��

G pq, qq
G pg,1qq

// G pp, qq

Fp
δp

// G pp, pq

G p1p,gq

OO

(2.11)

So every object of ZPspG ,Modopq is equivalent to one of the form pF, u, ζq with F landing
in Catop, with u : �� F Ñ F �� obtained from a δ as above via the formula

uK,ppk, xq � px,Kpδppxqqkq (2.12)

for k P Kp and x P Fp, and with ζ amounting to a rebracketing isomorphism.
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3. Review of internal centres

Now we shall define the full centre of a monoidale in a monoidal bicategory and the centre
of a monoidale in a braided monoidal bicategory as birepresenting objects, with somewhat
more detail than [48]. Also see [32].

Let ∆ denote the algebraist’s simplicial category: the objects are the ordinals n �
t0, 1, . . . , n� 1u (including the empty ordinal 0) and the morphisms are order-preserving
functions. Ordinal sum provides a monoidal structure on ∆. Let ∆K,J denote the sub-
category of ∆ consisting of the non-empty ordinals and functions which preserve first and
last elements as well as order. There is a canonical isomorphism of categories

∆op � ∆K,J

taking n to 1� n and ξ : n Ñ m in ∆ to the right adjoint of the functor 1�ξ : 1� n Ñ
1�m.

Let A be a monoidale (= pseudomonoid) in a monoidal bicategory M :

A � pA,Ab A
P
ÝÑ A, I

J
ÝÑ A,P pP b 1Aq

Φ
ùñ P p1A b P q, P pJ b 1Aq

λ
ùñ 1A

ρ
ùñ P p1A b Jqq .

A monoidal pseudofunctor A� : ∆Ñ M is defined by A�n � Abn and

A�p0Ñ 1Ð 2q � pI
J
ÝÑ A

P
ÐÝ Ab Aq .

Write MA A for the bicategory of pseudo-algebras for the pseudomonad Ab�bA on
M ; that is, it is the bicategory of left A-, right A-bimodules. We have a commutative
diagram

∆op � //

pA
��

∆K,J
incl. // ∆

A�

��

MA A
und.

//M

of pseudofunctors defining the augmented pseudosimplicial object pA of MA A which pro-
vides a (bicategorically) free resolution of A acting on itself via

P3 � pAb Ab A
Pb1AÝÝÝÑ Ab A

P
ÝÑ Aq . (3.13)

Here is an indicative picture for low dimensions.

. . . Ab4

1Ab1AbP //

1AbPb1A //

Pb1Ab1A //

Ab3

1AbP //

Pb1A //

Ab2 P //
1AbJb1Aoo A (3.14)

For any object U P M , we obtain a pseudosimplicial object U b pA of M .



MONOIDAL CENTRES AND GROUPOID-GRADED CATEGORIES 13

Suppose however that U is equipped with the structure U � pU, u, ζq of an object of
the centre ZM . Then we have a family of pseudo-equivalences

uA b 1Abpn�1q : U b Abn Ñ Ab U b Abpn�1q (3.15)

for n ¥ 2. Dispensing with the augmentation, we can transport the pseudosimplicial
structure on Ub pA via the graded pseudo-equivalences (3.15) to obtain a pseudosimplicial
object

. . . Ab U b Ab3

1AbUbAbP
//

1AbUbPb1A
//

pPb1UbAbAq�p1AbuAb1AbAq
//

Ab U b Ab2

1AbUbP
//

pPb1UbAq�p1AbuAb1Aq
//

Ab U b A
1AbUbJb1A

oo (3.16)

of free objects in MA A. Having the free structure on AbXbA means, for any M P MA A,
we have the equivalence of categories

MA ApAbX b A,Mq � M pX,Mq (3.17)

given by composing with J b 1X b J : X Ñ A b X b A. Apply MA Ap�, Aq to the
transported diagram (3.16), where A has action as in (3.13). Now use the equivalences
(3.17) to obtain a pseudocosimplicial category (3.18) in which the functors Bi and σj are
defined by (3.19) for h : U Ñ A and k : U b AÑ A.

M pU,Aq

B0 //

B1 //

M pU b A,Aq
σ0oo

B0 //

B1 //

B2 //

M pU b Ab A,Aq . . . (3.18)

B0phq � P � phb 1Aq B1phq � P � p1A b hq � uA

σ0pkq � k � p1U b Jq B0pkq � P � pk b 1Aq

B1pkq � k � p1U b P q B2pkq � P � p1A b kq � puA b 1Aq

(3.19)

The category CPM pU,Aq of centre pieces is the (strong) descent category [44, 47]
for the pseudocosimplicial category (3.18). This generalizes slightly the definition of [48]
since M need not be braided and we only require U P ZM . An object of CPM pU,Aq is
a morphism h : U Ñ A equipped with an invertible 2-morphism

U b A

hb1A
��

uA // Ab U

1Abh
��

γ +3
Ab A

P
##

Ab A

P
{{

A

(3.20)
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subject to a descent condition as in Section 2 of [48]. The equation

ph
ρh
ùñ P phb jq

γ
ùñ P pJ b hq

λh
ùùñ hq � 1h (3.21)

is a consequence. The lax descent category for the pseudocosimplicial category (3.18)
is denoted by CPℓM pU,Aq; the objects are called lax centre pieces and differ only from
centre pieces as described above in that the 2-morphism γ in (3.20) is not required to be
invertible and condition (3.21) must be added as part of the descent condition; compare
Section 4, Figure 1 of [32].

The centre piece construction extends canonically to a pseudofunctor

CPM p�, Aq : pZM qop Ñ Cat . (3.22)

A birepresenting object ZA P ZM for (3.22) is called the full monoidal centre of the
monoidale A P M : this means we have equivalences

ZM pU,ZAq � CPM pU,Aq

pseudonatural in U P ZM . So we have a universal centre piece zA : ZA Ñ A with
a 2-morphism as in (3.20) with U � ZA. The proof in [48] of Proposition 2.1 (or the
alternative in Remark 3.3 suggested by Stephen Lack) carries over to show that ZA is a
braided monoidale in ZM and zA : ZA Ñ A is strong monoidal in M . Of course, the
full monoidal lax centre of the monoidale A P M is defined by a pseudonatural family of
equivalences

ZM pU,ZℓAq � CPℓM pU,Aq

If M is a monoidal category (that is, has only identity 2-morphisms) then ZA is the
full centre of the monoid A in the sense of Davydov [12].

Suppose now that M is a braided monoidal bicategory and A is a monoidale in M .
Then each object U of M becomes an object U via the pseudofunctor (2.10) and we
write CPM pU,Aq rather than CPM pU,Aq for the category of centre pieces. Restriction
of (3.22) along (2.10) provides a pseudofunctor

CPM p�, Aq : M op Ñ Cat . (3.23)

In agreement with [48], a birepresenting object ZA P M for (3.23) is called the monoidal
centre of the monoidale A P M : this means we have equivalences

M pU,ZAq � CPM pU,Aq

pseudonatural in U P M . This ZA is braided in M and we have a universal strong
monoidal centre piece z : ZAÑ A in M .
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If M is a braided closed monoidal bicategory, as mentioned in [48], the monoidal
centre of a monoidale A P M is the codescent object for the pseudosimplicial object

rAb A,As

d0 //

d1 //

d2 //

rA,As

d0 //

d1 //
A .

s0oo (3.24)

This follows by replacing each M pUbAbn, Aq in (3.16) by the pseudonaturally equivalent
M pU, rAbn, Asq and applying the bicategorical Yoneda lemma of [42].

Of course, the centre of a monoidal category V in the sense of [25] is the monoidal
centre ZV of the monoidale V in the braided closed cartesian monoidal bicategory Cat.

4. Centre pieces in Modop

Lax centres in V -Modop were analysed in Section 7.2 of [32]. We provide a brief reminder
as needed for our purpose.

4.1. Lemma. Suppose that S, T : A Ñ X and K : D Ñ A and are functors. Suppose
that every object A of A is a colimit of some functor which factors through K and that
these colimits are preserved by S. Then restriction along K provides a bijection

rA ,X spS, T q � rD ,X spSK, TKq .

Moreover, if T also preserves the colimits in question then the bijection restricts to the
invertible natural transformations on both sides.

Proof. For D : K Ñ D and θ P rA ,X spS, T q, we see that θcolimKD : ScolimKD Ñ
T colimKD is induced on the colimit by the components of θKD. This allows the unique
reconstruction of θ from any natural transformation purporting to be its restriction. More-
over, any morphism induced on colimits by an invertible natural transformation is invert-
ible.

4.2. Proposition. For any monoidale A in Modop, the isomorphism of categories

ModoppU,Aq � rUop, rA, Setss

induces isomorphisms of categories

CPModoppU,Aq � CPCatpUop, rA, Setsq , CPℓModoppU,Aq � CPℓCatpU
op, rA, Setsq

where rA, Sets has the convolution monoidal structure for the promonoidal category A.
The three isomorphisms are pseudonatural in U P Catop where, on the left-hand sides,
U is inserted into Modop via the top pseudofunctor p�q� of (1.1) and, on the right-hand
sides, U is inserted into Cat via the left 2-functor p�qop of (1.1).
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Proof. We identify the functor P : Aop�Aop Ñ rA, Sets with the module P : AÑ A�A
involved in the monoidale structure on A. A centre piece ph, pγq : Uop Ñ rA, Sets in Cat
consists of a functor h : Uop Ñ rA, Sets, which clearly identifies with a module h : AÑ U ,
and a natural isomorphism

Uop � rA, Sets

hb1rA,Sets

��

cUop,rA,Sets
// rA, Sets � Uop

1rA,Setsbh

��
pγ +3

rA, Sets � rA, Sets

pP ((

rA, Sets � rA, Sets

pPvv

rA, Sets

satisfying the descent data condition. Here pP is colimit preserving in each variable and
has its restriction along yA � yA, where yA : Aop Ñ rA, Sets is the Yoneda embedding,
isomorphic to the functor P . As yA is dense and both domain and codomain functors of pγ
preserve colimits in the second variable, we can apply Lemma 4.1 with respect to restric-
tion along Uop�yA. This gives the bijection between (invertible) natural transformationspγ and (invertible) 2-cells γ : P � ph� 1Aq ñ P � p1A � hq � cU,A. Furthermore, the descent
conditions appropriately correspond.

4.3. Remark. The proof of Proposition 4.2 implicitly uses the fact that, if a pseudo-
natural transformation f : M Ñ N between pseudocosimplicial categories M and N is
such that f0 is an equivalence, f1 is fully faithful, and f2 is faithful, then f induces an
equivalence between the descent categories of M and N .

Lax colimits exist in the bicategory Mod (for example, see [43]) and this includes lax
codescent objects. So each promonoidal category A has a lax monoidal centre in Modop.

4.4. Corollary. The lax centre ZℓA of a monoidale A in Modop satisfies a lax-braided
monoidal equivalence

rZℓA, Sets � ZℓrA, Sets .

If the centre ZA of a monoidale A exists in Modop then there is a braided monoidal
equivalence

rZA, Sets � ZrA, Sets .

Proof. The composite equivalence

rUop,ZℓrA, Setss � CPℓCatpU
op, rA, Setsq � CPℓModoppU,Aq

� ModoppU,ZℓAq � rUop, rZℓA, Setss

gives the result on application of the bicategorical Yoneda Lemma.
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4.5. Remark. If A is an autonomous monoidal category then the lax monoidal centre is
equivalent to the monoidal centre in Modop (see [17, 32, 33]).

5. The groupoid of automorphisms in a groupoid

For any groupoid G and any autonomous monoidal category V , the category rG ,V s of
representations of G in V , with the pointwise tensor product, is also autonomous.

The groupoid of automorphisms in a groupoid G will be denoted by G aut. The objects
are pairs pp, aq where a : p Ñ p in G . A morphism f : pp, aq Ñ pq, bq is a morphism
f : p Ñ q in G such that fa � bf . We have a discrete fibration qG : G aut Ñ G taking
pp, aq

f
ÝÑ pq, bq to p f

ÝÑ q, with a section iG : G Ñ G aut taking p g
ÝÑ q to pp, 1pq

g
ÝÑ pq, 1qq.

If AutG : G Ñ Set denotes the functor taking the morphism p
g
ÝÑ q in G to the

conjugation function G pp, pq
G pg�1,gq
ÝÝÝÝÝÑ G pq, qq, a ÞÑ ag , then there is a standard equivalence

of categories

rG , Sets{AutG � rG aut, Sets (5.25)

because G aut is the category of elements of AutG : a natural transformation ϕ : X Ñ AutG
corresponds to the functor ϕ� : G aut Ñ Set which takes the object pp, aq to the fibre of
ϕp : Xp Ñ G pp, pq over a and takes pp, aq f

ÝÑ pq, bq to the restriction of Xp Xf
ÝÝÑ Xq to

those fibres.
There is a monoid structure on AutG in the cartesian monoidal category rG , Sets given

by componentwise composition in G . Consequently, there is a monoidal structure on the
left hand side of (5.25) whose tensor product takes cartesian product of the morphisms
over AutG followed by the monoid multiplication; also, there is a braiding as pointed
out by Freyd and Yetter [21]. This monoidal structure is closed (on both sides) and so
transports to a promonoidal structure on G aut: recall from Example 9 in Section 7 of [15]
or the end of Section 4 of [14] that the promonoidal structure is defined by

P ppp, aq, pq, bq; pr, cqq � tp
u
ÝÑ r

v
ÐÝ q : au bv � cu and Jpr, cq �

"
1 if c � 1r
∅ if c � 1r

(5.26)

and that there is a braiding

γa,b;c : P ppp, aq, pq, bq; pr, cqq
�
ÝÑ P ppq, bq, pp, aq; pr, cqq , pu, vq ÞÑ p au v, uq .

It also has a twist
τa � a : pp, aq Ñ pp, aq ;

compare Section 2 of [45]. The reader is invited to check the commutativity of (5.27)
which is the main twist condition.

P ppp, aq, pq, bq; pr, cqq
γa,b;c

//

P p1,1;τcq
��

P ppq, bq, pp, aq; pr, cqq

P pτa,τb;1q
��

P ppp, aq, pq, bq; pr, cqq P ppq, bq, pp, aq; pr, cqq
γb,a;c

oo

(5.27)
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Furthermore, G aut is a �-autonomous promonoidal category in the sense of [16]: we have
the natural isomorphisms

P ppp, aq, pq, bq; pr, c�1qq
�
ÝÑ P ppq, bq, pr, cq; pp, a�1qq , pu, vqú pu�1v, u�1q ;

P ppp, aq, pq, bq; pr, c�1qq
�
ÝÑ P ppq, b�1q, pp, a�1q; pr, cqqop , pu, vqú pv, uq .

From [48, 14, 17], we extract:

5.1. Proposition. The convolution braided monoidal category rG aut, Sets is braided mon-
oidal equivalent to the monoidal centre ZrG , Sets of the cartesian monoidal category rG , Sets.

The monoidal equivalence of Proposition 5.1 is the composite of the equivalence
rG , Sets{AutG � ZrG , Sets taking X ϕ

ÝÑ AutG to pX,X ��
u
ÝÑ ��Xq, where uY,ppx, yq �

pY pϕppxqqy, xq, and the standard equivalence (5.25). We note that the equivalence be-
comes balanced on transport of the convolution twist to the monoidal centre.

5.2. Remark. The universal centre piece for the monoidal centre of rG , Sets composed
with the equivalence of Proposition 5.1 is isomorphic to the composite

rG aut, Sets � rG , Sets{AutG
dom
ÝÝÑ rG , Sets

which is left Kan extension Lanq along the discrete fibration qG : G aut Ñ G . On objects,
it takes the functor S : G aut Ñ Set to the functor Ŝ � LanqS : G Ñ Set defined by
Ŝp �

°
aPG pp,pq Spp, aq with Ŝpp

g
ÝÑ qq taking x P Spp, aq to pSgqx P Spq, ag q. The centre

piece structure γ on Ŝ has components

γS,Y,p :
¸

aPG pp,pq

Spp, aq � Y p ÝÑ Y p�
¸

aPG pp,pq

Spp, aq

px P Spp, aq, y P Y pq ÞÑ pY paqy P Y p, x P Spp, aqq .

5.3. Proposition. The braided monoidale G aut is the monoidal centre of the monoidale
G in Modop. The braided monoidal bicategory PspG aut,Modopq is the monoidal centre of
the autonomous monoidal bicategory PspG ,Modopq.

Proof. The first sentence follows from Corollary 4.4, Remark 4.5 and Proposition 5.1.
The second sentence is a mildly higher dimensional version of Theorem 8.6 in [17] and
Remark 5.2. Notice that, for any set Λ, the conservative left biadjoint of the diagonal
pseudofunctor Diag : Modop Ñ PspΛ,Modopq is also a right biadjoint since bicategorical
coproducts in Mod are also bicategorical products [43]; so Λ is decomposing for Modop in
the language of [17]. (We could replace G by any category in which all endomorphisms
are invertible).
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5.4. Remark. The explicit biequivalence

ZPspG ,Modopq � PspG aut,Modopq (5.28)

was well prepared for in Example 2.1. Take an object pF, u, ζq of the centre of the form
(2.12) involving δp : Fp Ñ G pp, pq. Define F̌ : G aut Ñ Modop on objects by taking the
fibre F̌ pp, aq � δ�1

p paq of δp over a P G pp, pq. On the morphism g : pp, aq Ñ pq, bq it is the
restriction of the functor Fg to the fibres which makes sense using the dinaturality (2.11).
The inverse biequivalence takes S : G aut Ñ Modop to pŜ, δq where Ŝp �

°
aPG pp,pq Spp, aq

and δp picks off the index. This means that each component uT,p : Tp� ŜpÑ Ŝp� Tp of
the centre structure is represented on the direct sums by a diagonal matrix with entries

uT,p,a : Tp� Spp, aq Ñ Spp, aq � Tp, pτ, σq ÞÑ pσ, pTaqτq . (5.29)

5.5. Example. Return now to our fibration π : H Ñ G of Example 1.1. Since fibrations
in Cat are preserved by 2-functors of the form rD ,�s, we have the fibration πaut : H aut Ñ
G aut. The corresponding pseudofunctor Haut : G aut Ñ Modop is defined as follows. The
category Hautpp, aq has objects those ps, xq P H aut with πpxq � a; morphisms ps, xq k

ÝÑ

ps1, x1q are those in H aut with πpkq � 1p. For pp, aq
f
ÝÑ pq, bq in G aut, the module

Hautf : Hautpq, bq Ñ Hautpp, aq is defined by

pHautfqpps, xq, pt, yqq � th P H autpps, xq, pt, yqq : πphq � fu .

The cleavage σ for π also gives a cleavage for πaut. The corresponding pseudo-
functor Haut : G aut Ñ Catop has the same value on objects as in the last paragraph.
For pp, aq f

ÝÑ pq, bq in G aut, the functor Hautf : Hautpq, bq Ñ Hautpp, aq takes pt, yq k
ÝÑ

pt1, y1q in Hautpq, bq to pf�ptq, yσpfqq
f�pkq
ÝÝÝÑ pf�pt1q, y

σpfq
1 q. The invertible composition

constraint pHautfqpHautgq ñ Hautpgfq has component at pu, zq P Hautpr, cq equal to
σpgfq�1σpgqσpfq : pf�g�puq, zσpgqσpfqq Ñ ppgfq�puq, zσpgfqq. It is worth remembering that
the functor Hautf is an equivalence with pseudo-inverse Hautf�1.

We have the pseudofunctor yHaut : G Ñ Catop, supporting the centre structure, corre-
sponding to Haut under the biequivalence (5.28). The commutative triangle

H aut

""

qH //H

π
~~

G

of fibrations induces functors qHp : yHautp Ñ Hp between the fibres. The right adjoint
modules q�Hp : HpÑ yHautp as morphisms in Modop are the components of a morphism

zH : yHaut Ñ H (5.30)

in PspG ,Modopq.
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6. Monoidales in convolution bicategories

One virtue of the promonoidal groupoid G aut over the monoid AutG is that we can obtain
convolution balanced monoidal structures on functors from G aut, not only into Set but,
into any nice enough monoidal category; or even on pseudofunctors from G aut into any
nice enough monoidal bicategory.

Let K be a monoidal bicategory with coproducts preserved by horizontal composition
in each variable. The tensor product will be denoted by �b� : K �K Ñ K with unit
object I . Think of G aut as a bicategory with only identity 2-cells. We will make explicit
the convolution monoidal structure on the bicategory PspG aut,K q.

Take S, T P PspG aut,K q. Put2

pS � T qpr, cq �
¸
ab�c

Spr, aq b T pr, bq
�
�

» pp,aq,pq,bq

ps

P ppp, aq, pq, bq; pr, cqq � Spp, aq b T pq, bq
�

and, for pr, cq f
ÝÑ pr1, c1q in G aut, define pS � T qf by commutativity in

Spr, aq b T pr, bq
ina,b

//

SfbTf

��

°
ab�c Spr, aq b T pr, bq

pS�T qf

��

Spr1, a
f q b T pr1, b

f q
in

af , bf

//
°
a1b1�c1

Spr1, a1q b T pr1, b1q .

(6.31)

This defines the tensor product S � T for a monoidal structure on PspG aut,K q with unit
J : G aut Ñ K defined by

Jpr, cq �
"

I if c � 1r
0 if c � 1r

(6.32)

which becomes functorial on noting that, for c f
ÝÑ c1, if c � 1r then c1 � 1r.

We can now contemplate monoidales M in PspG aut,K q. Such a monoidale consists
of a pseudofunctor M : G aut Ñ K equipped with morphisms

Ir : I ÑMpr, 1rq and �a,b :Mpr, aq bMpr, bq ÑMpr, abq

in K and invertible 2-cells

Mpr, aq bMpr, bq bMpr, cq

�a,bb1

��

1b�b,c
//Mpr, aq bMpr, bcq

�a,bc

��

αa,b,c

�
+3

Mpr, abq bMpr, cq
�ab,c

//Mpr, abcq

(6.33)

2The coend here is in the pseudo-sense appropriate to bicategories.
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Mpr, aq

1

��

Irb1

tt

1bIr

**

Mpr, 1rq bMpr, aq

�1,a
**

λa�+3 Mpr, aq bMpr, 1rq
ρa�+3

�a,1
tt

Mpr, aq

(6.34)

all subject to pseudonaturality

Mpr, aq bMpr, bq

�
ùñ

�a,b
//

MfbMf
��

Mpr, abq

Mf
��

Mpr, af q bMpr, bf q
�

af , bf

//Mpr, af bf q ,

(6.35)

modificationality and coherence conditions.

6.1. Example. When we consider the monoidal bicategory PspG ,Modopq, it is with the
pointwise monoidal structure, which is autonomous since Modop is and G is a groupoid.
The H of Example 1.1 is a monoidale in PspG ,Modopq. The monoidal structure is provided
by the modules

�p : HpÑ Hp�Hp and Ip : HpÑ 1

defined by

�pps, t;uq � Hpps, uq �Hppt, uq , �ppx, y; zq � Hppx, zq �Hppy, zq , Ip �!�

The unit and associativity constraints are much as for the promonoidal structure (1.4) on
G . The pseudonaturality structure on the modules �ps, t;uq is provided by the Yoneda
Lemma isomorphisms

ppHa�Haq � �qqps1, s2; tq �
» t1,t2

�qpt1, t2; tq �Hqps1, a�pt1qq �Hqps2, a�pt2qq

�

» t1,t2
Hqpt1, tq �Hqpt2, tq �Hpps1, a�pt1qq �Hpps2, a�pt2qq

� Hpps1, a�ptqq �Hpps2, a�ptqq � �pps1, s2; a�ptqq

�

» s
Hpps, a�ptqq � �pps1, s2; sq � p�p �Haqps1, s2; tq .

6.2. Example. The Haut of Example 5.5 is a monoidale in PspG aut,Modopq. The monoidal
structure is provided by the modules

�a,b : Hautpr, abq Ñ Hautpr, aq �Hautpr, bq and Ir : Hautpr, 1rq Ñ 1
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defined by

�a,bpps, xq, pt, yq; pu, zqq � tpm,nq P Hrps, uq �Hrpt, uq : xm yn � zu

Irpu, zq �

"
1 if z � 1u
∅ if z � 1u

.

The unit and associativity constraints are much as for the promonoidal structure (5.26) on
G aut. The pseudonaturality structure on the component modules �a,bpps, xq, pt, yq; pu, zqq
is provided by the Yoneda Lemma isomorphisms

ppHautf �Hautfq � � af , bf qpps, xq, pt, yq; pu, zqq � �a,bpps, xq, pt, yq; pf
�puq, zσpfqqq

� p�a,b �Hautfqpps, xq, pt, yq; pu, zqq .

We leave the coend calculation as an exercise with the reminder that the three occurrences
of the functor Hautf are values at the three morphisms pp, aq f

ÝÑ pq, af q, pp, bq f
ÝÑ pq, bf q,

and pp, abq
f
ÝÑ pq, af bf q (as per (6.35)).

7. The Turaev-Virelizier structures

The definitions in this section are those of [52]. For this section, fix a group G regarded as
a groupoid with one object oG and with morphisms oG

g
ÝÑ oG the elements g of the group.

7.1. Definition. A G-graded category over k is a k-linear monoidal category C , with
finite direct sums, endowed with a system of pairwise disjoint full k-linear subcategories
Ca, a P G, with finite direct sums, such that

(a) each object X P C splits as a direct sum `aXa where Xa P Ca and a runs over a
finite subset of G;

(b) if X P Ca and Y P Cb then X b Y P Cab;

(c) if X P Ca and Y P Cb with a � b then C pX, Y q � 0;

(d) the tensor unit I of C is in C1.

Turaev-Virelizier call an object X of a G-graded category C homogeneous when there
exists a (necessarily unique) a P G such that X P Ca; this a is denoted by |X|.

They write Ḡ for the discrete monoidal category of elements of G with the multiplica-
tion as tensor product. They write AutpC q for the monoidal category of monoidal endo-
equivalences of the monoidal k-linear category C and monoidal natural isomorphisms; the
tensor product is composition of functors.
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7.2. Definition. A G-crossed category C is a G-graded category over k equipped with a
strong monoidal functor ϕ : ḠÑ AutpC q such that ϕapCbq � Ca�1ba for all a, b P G.

7.3. Proposition. Let V be the monoidal category of modules over a fixed commutative
ring. Then monoidales in PspGaut,V -Catq are equivalent to the G-crossed categories of
[52]. More precisely, with the appropriate notions of G-crossed functor and G-crossed
natural transformation, this becomes a biequivalence of 2-categories (in the sense of [42]).

Proof. Take a monoidale M in PspGaut,V -Catq. Let C be the V -category obtained by
taking the completion, with respect to finite direct sums, of the coproduct Chom �

°
aMa

in V -Cat. Then C is a G-graded category with ϕf �Mf�1.
Conversely, take a G-graded category C and define Ma to be the full sub-V -category

Ca of C consisting of the objects homogeneous over a P G. Then M is a monoidale in
PspGaut,V -Catq.

7.4. Corollary. With V as in Proposition 7.3, any monoidale in PspGaut,Modopq de-
livers a G-crossed category on application of the pseudofunctor (1.3).

7.5. Definition. A G-braided category C is a G-crossed category pC , ϕq equipped with
a natural family of isomorphisms

γX,Y : X b Y ÝÑ Y b ϕ|Y |pXq ,

for X, Y P C and Y P C|Y | homogeneous, subject to the three axioms given by diagrams
(11), (12), (13) in Subsection 3.3 of [52].

In the next section, we will see how this fits into our theory of braided monoidales.

8. Internal homs, biduals and braidings

If K is left closed, it is straightforward to see that so too is PspG aut,K q:

rT, U spp, aq �
¹
b

rT pp, bq, Upp, abqs . (8.36)

8.1. Proposition. Suppose in K that direct sums indexed by the endohomsets of G exist
and that each T pq, bq has a left bidual T pq, bq_. Then T has a left bidual

T_pp, aq � rT, Jspp, aq � T pp, a�1q_ (8.37)

in PspG aut,K q.
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Proof. Taking (8.37) as the definition of T_, we need to prove that the canonical mor-
phism S � T_ ÝÑ rT, Ss is an equivalence for all S. The component of this canonical
pseudonatural transformation at pr, cq is the composite¸

ab�c

Spr, aq b T pr, b�1q_ �
¸
d

Spr, cdq b T pr, dq_

�
¸
d

rT pr, dq, Spr, cdqs
canon.
ÝÝÝÑ

¹
d

rT pr, dq, Spr, cdqs

in which the arrow is an equivalence because of our assumption about direct sums.

8.2. Corollary. All biduals exist in PspG aut,Modopq; that is, the monoidal bicategory
is autonomous (also called “compact” or “rigid”).

If K is equipped with a braiding γX,Y : X b Y Ñ Y bX then we obtain a braiding
γS,T : S � T Ñ T � S on PspG aut,K q as defined by the commutative pentagon (8.38).

Spr, aq b T pr, bq
γSpr,aq,T pr,bq

//

ina,b
��

T pr, bq b Spr, aq
Tab1

// T pr, ba q b Spr, aq

in ba ,a

��°
ab�c Spr, aq b T pr, bq γS,T,pr,cq

//
°
b1a1�c T pr, b

1q b Spr, a1q

(8.38)

If K is balanced then so too is PspG aut,K q with twist

θS,pp,aq �
�
Spp, aq

Sa
ÝÑ Spp, aq

θSpp,aq
ÝÝÝÝÑ Spp, aq

�
.

Recall that, if K is symmetric, we choose its twist to be the identity.
We already have the example G aut of a �-autonomous balanced monoidale in Modop.

8.3. Proposition. The monoidal bicategory PspG aut,Modopq is tortile (in the sense of
[40]).

Moreover, with PspG aut,K q a braided monoidal bicategory, according to [48], we can
contemplate monoidal centres ZM for monoidales M therein. Since the centre is a limit,
it is formed pointwise in K . From [48], we know that ZM is a braided monoidale in
PspG aut,K q.

8.4. Example. The monoidale Haut of Example 6.2 is balanced in PspG aut,Modopq. The
braiding is

γx,y;z : �a,bpps, xq, pt, yq; pu, zqq
�
ÝÑ �b,appt, yq, ps, xq; pu, zqq , pm,nq ÞÑ p xm n,mq .

The twist τ : Haut Ñ Haut is given by τa � Hauta : Hautpp, aq Ñ Hautpp, aq.
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For the remainder of this section, let us return to the context of Section 7 where G is
a group and K � V -Cat where V is a complete cocomplete closed symmetric monoidal
category. For S P PspGaut,V -Catq, f : aÑ b in Gaut and A P S, we put fA � pSfqA P Sb.

Let M be a monoidale in PspGaut,V -Catq. The tensor product consists of V -functors
�a,b : Ma bMb Ñ Mpabq. The unit is an object I of M1. The associativity constraint
consists of a V -natural family

αa,b,c : pA �a,b Bq �ab,c C ÝÑ A �a,bc pB �b,c Cq . (8.39)

A braiding for M consists of a V -natural family

γa,b : A �a,b B ÝÑ aB � ba ,a A . (8.40)

8.5. Proposition. In the setting of Proposition 7.3, the braided monoidales in
PspGaut,V -Catq are equivalent to the G-braided categories of [52].

According to Section 3 of [48], since pseudolimits limits are formed pointwise, the
monoidal centre ZM of a monoidale M in PspGaut,V -Catq is constructed as follows. The
V -category pZMqa has objects pairs pA, υq where A is an object of Ma and υ is a half
G-braiding for A consisting of a V -natural family of isomorphisms

υb : A �a,b B ÝÑ aB � ba ,a A (8.41)

such that υ1 : A �a,1 I ÝÑ I �1,a A transports the right unit constraint into the left unit
constraint and the following hexagon commutes.

A �a,bc pB �b,c Cq
υ // paB � ba , ca aCq � pbcqa ,a Aq

α

��

pA �a,b Bq �ab,c C

α
55

υb1
))

aB � ba ,ac paC � ca ,a Aq

paB � ba ,a Aq �ab,c C α
// aB � ba ,ac pA �a,c Cq

1bυ

OO

For f : aÑ af , we have pZMqpfqpA, υq � pfA, υ1q where υ1b for B PMb is the composite

fA � af ,b B � fpA �a, bf�1 f�1Bq
fυf�1B
ÝÝÝÝÑ fpaf�1B � pf�1bqa ,a Aq � af B �

ba
f

, af
fA .

9. A full centre from a groupoid fibration

Davydov [12] defined the full centre of a monoid A in a (not necessarily braided) monoidal
category V to be a commutative monoid ZA in the (braided) monoidal centre ZV of V
satisfying an appropriate universal property. The universal property is that of a terminal
object in a category of elements of a set-valued functor CPV p�, Aq, and so amounts to



26 BRANKO NIKOLIĆ AND ROSS STREET

saying that the set-valued functor is representable. It is pointed out in [50] that the pair
pZV ,ZAq is the monoidal centre of the monoidale pV , Aq in the monoidal bicategory of
pointed categories.

In Section 3, we lifted the concept of full centre from the monoidal category level to
the monoidal bicategory level. The full monoidal centre of a monoidale A in a monoidal
bicategory M is a braided monoidale ZM in the monoidal centre ZM of M satisfying
an appropriate universal property.

9.1. Proposition. The full monoidal centre of the monoidale H in PspG ,Modopq (see
Examples 1.1 and 6.1) is the braided monoidale Haut in PspG aut,Modopq (see Examples 6.2
and 8.4). The universal centre piece has underlying morphism zH : yHaut Ñ H as in (5.30).

Proof. We must produce an equivalence

PspG aut,ModopqpS,Hautq � CPPspG ,ModopqpŜ,Hq (9.42)

where we can suppose that S factors through p�q� : Catop Ñ Modop and where Ŝ is as in
Remark 5.4.

Recalling the centre structure (5.29) on Ŝ and performing some coend calculations, we
see that the centre piece structure on a pseudonatural transformation k : Ŝ Ñ H amounts
to isomorphisms

kp,apσ, sq �Hpps1, a�psqq � Hpps1, sq � kp,apσ, sq (9.43)

of the form pα, zq ÞÑ pκpα, zq, αq, where kp,a is the composite module

Hp kp
ÝÑ

¸
aPG pp.pq

Spp, aq
in�aÝÝÑ Spp, aq .

Let h : S Ñ Haut be a pseudonatural transformation. It has component modules
hpp,aq : Hautpp, aq Ñ Spp, aq for objects pp, aq P G aut. Identify hpp,aq with the corresponding
functor Hautpp, aq Ñ rSpp, aqop, Sets and let ĥp,a : Hp Ñ rSpp, aqop, Sets be the left Kan
extension of that functor along the discrete fibration Hautpp, aq Ñ Hp taking ps, xq to s.
Explicitly,

ĥp,apσ, sq �
¸

x P H ps, sq
πpxq � a

hpp,aqpσ, ps, xqq (9.44)

for each σ P Spp, aq. For (9.43) with k � ĥ, we take κpα, zq � x�1σpsqz where x P H ps, sq
is the index of the summand of (9.44) which contains α. This define (9.42) on objects.

Now take a morphism ω : h ñ h1 : S Ñ Haut. We obtain natural transformations
ωpp,aq : hpp,aq ñ h1pp,aq : Hautpp, aq Ñ rSpp, aqop, Sets which induce natural transformations
ω̂p,a : ĥp,a ñ ĥ1p,a on the Kan extensions leading to a modification ω̂ : ĥñ ĥ1 compatible
with the centre piece structures.
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Thus we have a family of functors

pp�qS : PspG aut,ModopqpS,Hautq Ñ CPPspG ,ModopqpŜ,Hq

pseudonatural in S. By the bicategorical Yoneda Lemma, the family is induced by the
ĥ obtained by setting S � Haut and taking h to be the identity module. Then the
corresponding functor hpp,aq is the Yoneda embedding. The module ĥp : Hp Ñ yHautp is
the right adjoint q�Hp mentioned in the line before (5.30). Therefore ĥ is the morphism
zH : yHaut Ñ H equipped with its centre piece structure.

Now take a pseudonatural transformation k : Ŝ Ñ H equipped with a centre piece
structure determined as in (9.43) by functions κ : kp,apσ, sq � Hpps1, a�psqq Ñ Hpps1, sq.
Define modules ǩpp,aq : Hautpp, aq Ñ Spp, aq by

ǩpp,aqpσ, ps, xqq � tα P kp,apσ, sq : κpα, 1a�psqq � x�1σpsqu

to obtain the components on objects of a pseudonatural transformation ǩ : S Ñ Haut. We
immediately see from (9.44) that ˆ̌k � k. Using naturality of (9.43) in s1, we see that the
κ for ˇ̂

h recovers that for h. The construction k ÞÑ ǩ extends to a functor

pq�qS : CPPspG ,ModopqpŜ,Hq Ñ PspG aut,ModopqpS,Hautq

which is an inverse equivalence for pp�qS.
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